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‘ABSTRACT

The m-chromatic number xm(G) of a graph G = (V,E)
is the least integer k such that there exists a mapping
£:v +» {8 € {1,2,...,k}:|S|= m} having the property that
f(u)Nf(v) = ¢ whenever {u,v} € E. This is a generalization
of the standard notion of chromatic number and arises in
connection with mobile telephone frequency assignments.
Answering a question of Lov4sz, our first result shows that
for any m > 1 and any € > 0, there exists a graph G for which
Xm+1(6)/Xp(G) > 2-e. This shows that the known bound of 2
for all m and G is essentially best possible. Our second

result shows that the least integer m, for which x (G)/m0 =
0

1im xm(G)/m can be asymptotically as large as e.(nIogn)]E

m->co

for some n vertex graphs, though it can never exceed e
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I. INTRODUCTION

The following generalization of the standard notion
-of graph coloring has been of recent interest [1,3,4,6,7,8]. A

multicoloring of a graph G = (V,E) is a function f defined on

V whose values are sets (of "colors") satfg}ying f(u)Nf(v) = ¢

E| whenever {u,v} € E. For positive integers k,m, a (k,m)-coloring

of G = (V,E) 1s a multicoloring f of G such that |f(v)| = m

for each v ¢ Vand | U f(v)| = k. The m-chromatic number xm(G)
veV

is the least integer k such that there exists a (k,m)-coloring

of G. (This last definition differs from that of [6,7] by a

-i factor of m.) Notice that for m = 1 these definitions corres-
| pond to the usual graph coloring notions. The purpose of
i
‘ this note is to resolve two questions about multicoloring con-

& & veyed to us by P. Erdds [2].
ﬁ,{ ?‘ The first question deals with the relationship

between x_(G) and ¥ (G). It is not difficult to see that
m m+1

r ‘ ;..,- _g - T f.'
Xme1 (@) £ Xg(@) + x,(6) < 2-x,(G) | g 3;5
§ o
1181
A g ie fs g:‘.
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with equality possible in the right-hand inequality only

for m = 1. Lovédsz asked [2] whether, for each value of m,

there exist graphs G such that xm+1(G) > (2-e)xm(G). We

5{ shall answer this question in the affirmative.

: The graphs we shall use are defined as follows: for posi-
tive integers n > 2m, the graph Gg has vertex set consisting

é of all m-element suﬁéeqé of {1,2,...,n} and has an edge between

twd such vertices exactly when their intersection is empty.

n

m) < n merely by considering the

f; It is easy to see that xm(G
multicoloring provided by the definition of G: and, in fact,
it is proved in [7,8] that Xm(G;) = n. Thus, to answer the

question of Lovédsz, it suffices to prove the following theorem:

Theorem 1. For each m > 2, there exists a constant ¢ such

that for all sufficiently large n

ﬁf‘ j xm+l(G:1) o R

In order to prove Theorem 1, we require the following

lemma, which is an immediate consequence of a special case of .H

Theorem 3 in [5].

Lemma 1. For fixed m > 2 and n sufficiently large, there

exists a constant ao such that the number of m-element subsets

of {1,2,...,n} which can be chosen so that no two are disjoint

but there is no element common to all is at most aonm'z.




Proof of Theorem 1. Fix m. We merely need to show that,

for all sufficiently large n,

n n-1
Xm+1(Cm) = Xme1 (G m ) e

and the result will follow by induction. So suppose we have
- 1 n
a (k,m+l)~coloring of qm such that k = xm+1(Cm) , where n is

any integer sufficiently large that the conclusion of Lemma 1

n-1 m-2
. , Where a, is the constant

of Lemma 1. We first claim that there must be at least n+l

holds and such that( )> mayn

colors which each appear on more than aonm"2 vertices.

Suppose there are n or fewer colors which each appear

on more than aonm'2 vertices. By Lemma 1, each such color can

n-1 m-2

appear on at most (m-l) > agn vertices since they must all
share a common element. Thus, since each of the (3) vertices

receives exactly m+l colors, we must have

(3 :

A

n (g:i) + (k—n)aonm'

2

|A

m (;) + (k-n)aonm'

or, rewriting,

(n) < (k-n)aonm'
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it tollows that we must have

n m-1 .
(m) < agn
However this 1is a contradiction, since n was chosen sufficiently
large that (2) = % (2:%) > % maonm'2 = aonm_l, and the claim
foilows.

Thus there are at least n+l colors which each appear

m-2 vertices . The set of vertices on which

on more than agn
any color i appears must form a collection of pairwise-inter-

secting m-element subsets of {1,2,...,n}, by definition of Gg.
Thus, by Lemma 1, whenever color i appears on more than aonm'2
vertices, all those vertices must contain some common element
ey Since there are more than n such colors, we must have

ey = eJ for some 1 and j. If we delete from G; all the vertices

n-1

containing e, = eJ, we obtain a copy of G, = and a (k-2,m+1)-

coloring of 1it, since colors i1 and j have disappeared. Therefore

Xm+1 (G;-l)i k=2 = Yp+1 (G:> il

and the theorem is proved. B
The second question involves what we call the

*
ultimate multichromatic number yx (G) defined by

x 1 (G) = inf Xy, (6)/m.
m
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It is proved in [1,7] that the value of x*(G) is always achieved
for some finite m. One easy way to see this is to formulate

the problem of determining x*{G) as a linear programming
problem. (as done in [4]): Let VysVy,...,V, be an ordering

of the vertices of G and let Sl,Sz,...,S2 be an ordering of ?
the independent sets‘ofAG. Define xiJ to be 1 whenever vy € Sj %

and 0 otherwise. Then the value of x*(G) is given by

Cidia s iy ok o

2
x¥(G) = min 25 r

subject to: rJ
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One can show easily, using Hadamard's Theorem, that no basis

matrix for this problem can have determinant exceeding nn/2

and this 1s an upper bound on the value of m required.

This upper bound however seems ridiculously large.
Erdds asked [2] (as did the authors, independently) whether
x*(G) could always be achieved for an m not exceeding the
number of vertices of G. We answer this in the negative,
constructing graphs for which extremely large values of m are

necessary to achieve x*(aG).
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Let Cp denote the graph which is a cycle on p
vertices. The join G1+G2 of two graphs G1 and G2,.having
disjJoint vertex sets, consists of all edges and vertices in
the two given graphs along with all edges joining a vertex
from G, to a vertex from G,. We use the following two lemmas

¥ 2
in our construction:

Lemma 2. [4,7] For all integers p > 1,

* =
X (C2p+1) 2 % (1/p).
Lemma 3. [7] For all graphs Gl and G2’

X*(G1#G,) = X*(G;) + x*(G,).

h

Let p, denote the it prime and define the graph
i

G(i) to be C + C +.:.+4 C The number of

2p1+1 2p2+1
vertices n of G(i) is given by

2pi+l'

i

i S j%.p ’
=3 ¥

Applying Lemmas 2 and 3, we obtain

i

x#Ca(1)) = 2L *+ Y. (1/p,) .
o2 S

Since xm(G(i)) must always be an integer, it follows that the

least value of m for which x*(G(i)) = xm(G(i))/m can be no less

i
that 77- pJ (and in fact that value of m will work). Using
J=1

the Prime Number Theorem and expressing this lower bound in

.
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terms of n, we obtain the asymptotic lower bound of

Y{nlogn)/2

e -
Thus, though this is still quite far from the upper bound of

nn/2 ) e(nlogn)/2

we see that extremelky large values of m can be required in

order to achieve x*(G).
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